Inhibitory effect of the small heterodimer partner on hepatocyte nuclear factor-4 mediates bile acid-induced repression of the human angiotensinogen gene.
نویسندگان
چکیده
Bile acids function as transcriptional regulators for the genes important in bile acid synthesis and cholesterol homeostasis. In this study, we identified angiotensinogen (ANG), the precursor of vasoactive octapeptide angiotensin II, as a novel target gene of bile acids. In human ANG transgenic mice, administration of cholic acid resulted in the down-regulation of human ANG gene expression in the liver. ANG gene expression in HepG2 cells was also repressed by chenodeoxycholic acid. Because the expression of small heterodimer partner (SHP) mRNA was induced by chenodeoxycholic acid in HepG2 cells, we analyzed the effects of SHP on the human ANG promoter. Promoter mutation analysis demonstrated that SHP repressed human ANG promoter activity through the element, which has been previously determined as a binding site for hepatocyte nuclear factor-4 (HNF-4). SHP repressed human ANG promoter activity only when the HNF-4 expression vector was cotransfected in HeLa cells. Furthermore, we found that SHP bound to the HNF-4 N-terminal region including the DNA-binding domain and activation function-1 and that SHP prevented HNF-4 from binding to the human ANG promoter. These results suggest that bile acids negatively regulate the human ANG gene through the inhibitory effect of SHP on HNF-4.
منابع مشابه
The human organic anion transporter 2 gene is transactivated by hepatocyte nuclear factor-4 alpha and suppressed by bile acids.
The human organic anion transporter 2 (hOAT2, SLC22A7) mediates the sodium-independent uptake of numerous drugs, including cephalosporins, salicylates, dicarboxylates, and prostaglandins, and is mainly expressed in hepatocytes. Because the regulation of hOAT2 expression is poorly understood, we characterized cis-acting elements in the 5'-flanking region that regulate hOAT2 transcription. A cons...
متن کاملRole of nuclear receptors and hepatocyte-enriched transcription factors for Ntcp repression in biliary obstruction in mouse liver.
Expression of the main hepatic bile acid uptake system, the Na+-taurocholate cotransporter (Ntcp), is downregulated during cholestasis. Bile acid-induced, farnesoid X receptor (FXR)-mediated induction of the nuclear repressor short heterodimer partner (SHP) has been proposed as a key mechanism reducing Ntcp expression. However, the role of FXR and SHP or other nuclear receptors and hepatocyte-e...
متن کاملLiver receptor homolog-1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis.
Liver receptor homolog 1 (LRH-1), an orphan nuclear receptor, is highly expressed in liver and intestine, where it is implicated in the regulation of cholesterol, bile acid, and steroid hormone homeostasis. Among the proposed LRH-1 target genes in liver are those encoding cholesterol 7alpha-hydroxylase (CYP7A1) and sterol 12alpha-hydroxylase (CYP8B1), which catalyze key steps in bile acid synth...
متن کاملBile acids: regulation of synthesis.
Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important ...
متن کاملRegulation of hepatic metabolic pathways by the orphan nuclear receptor SHP.
SHP (small heterodimer partner) is an important component of the feedback regulatory cascade, which controls the conversion of cholesterol to bile acids. In order to identify the bona fide molecular targets of SHP, we performed global gene expression profiling combined with chromatin immunoprecipitation assays in transgenic mice constitutively expressing SHP in the liver. We demonstrate that SH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 9 شماره
صفحات -
تاریخ انتشار 2004